

# Introduction

- Opioid overdoses claimed 47,600 American lives in 2017, yet a highly effective reversal agent (naloxone) is readily available.<sup>1</sup>
- Naloxone's efficacy is time-dependent, so minimizing the time required to reach patients is critically important.
- Drone delivery of naloxone (prior first responder arrival) may result in expedited resuscitation and improved patient outcomes.
- Data on travel times for drones compared to medical first responders (MFRs) are lacking.
- This study analyzes the time required for a drone carrying naloxone to traverse various distances in order to simulate the time required for drones to reach the scene of opioid overdoses and compare these results with real-world MFR transit data.

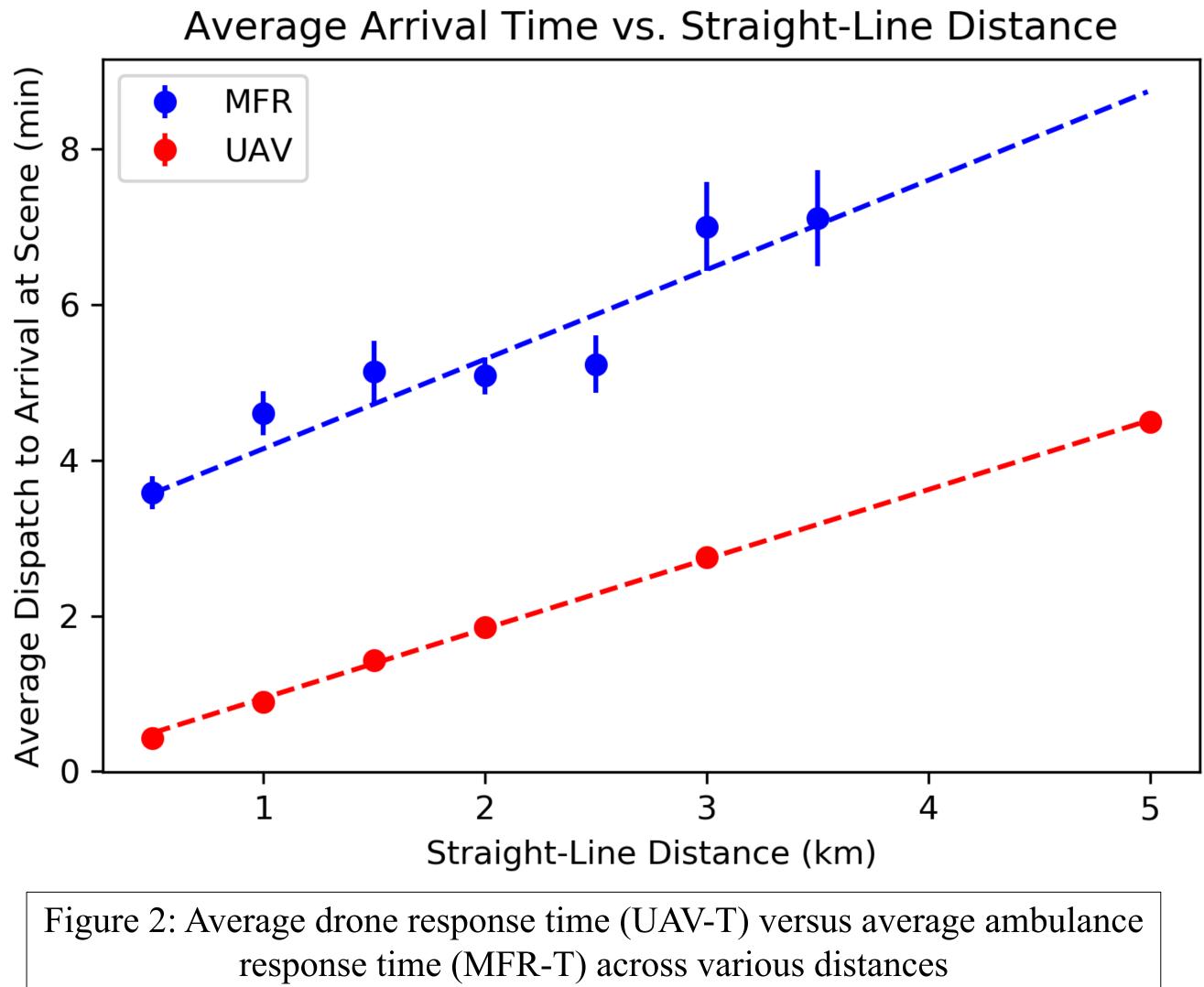
# Methods

- 50 total flight trials were conducted using a customized DJI Inspire 2 drone (Fig 1) across seven different straight-line distances corresponding to common distances found in our MFR reference dataset.
- Total time required for the drone to take-off, ascend to its "cruising altitude", and then travel the horizontal distance in question was recorded as the UAV-T variable. (Table 1)
- 200 Detroit-based MFR runs to suspected or actual opioid overdoses were used for comparison; time elapsed between MFR dispatch and arrival on scene was recorded as the MFR-T variable (Table 1).
- MFR-T was compared with UAV-T across different distances in order to identify disparities in travel times (I.e. between dispatch and arrival-on-scene) for the MFRs versus the drone at each discrete distance. (Fig 2)

# Results

- These data show with greater than 95% certainty that drone travel times are better than ambulance arrival times at distances of 0.5 km, 1.0 km, 1.5 km, 2.0 km, and 3.0 km.
- At the remaining distances, we were unable to draw statistically significant conclusions due to an insufficient quantity of first responder data (I.e. fewer than 5 data points).

# **Can Unmanned Aerial Vehicles Supplement Services Provided by Traditional First Responders?**


Matthew R. Tukel BA<sup>1</sup>, Connor A. Tukel BA<sup>1</sup>, Robert J. Weinbaum BS, Phillip D. Levy MD, MPH, Robert Dunne MD, FAEMS, FACEP. Wayne State University School of Medicine, Department of Emergency Medicine

\*Funding: This study was funded by a grant provided through Wayne State University's Undergraduate Research Opportunities Program.

Figure 1: Customized DJI Inspire 2 drone used for this study.

| Straight-Line<br>Distance (km) | MFR-T (sec) | UAV-T (sec) | Drone's Arrival<br>Time Improvement<br>over MFR (sec) |
|--------------------------------|-------------|-------------|-------------------------------------------------------|
| 0.5                            | 215 +/- 25  | 26 +/- 2    | 189 +/- 25                                            |
| 1.0                            | 276 +/- 34  | 54 +/- 5    | 222 +/- 34                                            |
| 1.5                            | 308 +/- 47  | 86 +/- 3    | 223 +/- 47                                            |
| 2.0                            | 305 +/- 28  | 112 +/- 3   | 194 +/- 28                                            |
| 2.5                            | 314 +/- 43  |             |                                                       |
| 3.0                            | 420 +/- 67  | 165 +/- 2   | 255 +/- 67                                            |
| 3.5                            | 427 +/- 73  |             |                                                       |
| 5.0                            |             | 269 +/- 3   |                                                       |

Table 1: Mean Time Between Dispatch and Arrival for MFR (MFR-T) Versus Drone (UAV-T) Across Various Distances





- opioid overdoses the same distances away.

# **Use of Drones During COVID-19**

- and venues.<sup>6</sup>
- liberties.7
- *JAMA*.2017;317(22):2332–2334. doi:10.1001/jama.2017.3957
- response. KIRO.
- 2020
- (n.d.)
- FOX News Network, 27 July 2020.

# WAYNE STATE **School of Medicine**

# Discussion

• We have shown that a drone is capable of traveling faster across several straight-line distances than an ambulance responding to

• UAVs are a platform technology and may be used to deliver urgent medical supplies (E.g. epi-pens, anti-convulsant medications and AEDs) in acute medical emergencies.<sup>2</sup>

• Many technological, economic, and regulatory considerations must be explored before attempts to integrate these platforms into municipal emergency response infrastructure are made.

• Limitations of this investigation include: limited MFR response reference dataset, restricted number of flight trials, and conducting tests exclusively in optimal weather conditions.

• COVID-19 has brought about new opportunities to practically evaluate and actually implement drone-based healthcare delivery.

• The primary domains of drone use during COVID-19 include:

- Crowd Monitoring & Temperature Checks => Surveying public spaces to identify highrisk individuals based on detectable vital signs (E.g. temperature, heart rate, cough).<sup>3</sup>

- **Disseminating Public Health Messages** => Broadcasting social distancing announcements and reminding passersby about the importance of wearing masks.<sup>4</sup>

- **Delivery of critical medical supplies** => Collaborative efforts to establish hospital delivery networks for rapid transport of time and temperature sensitive medications, PPE, and other key supplies needed to treat COVID-19 patients and protect front-line workers.<sup>5</sup>

**Disinfection** => Repurposing agricultural drones to sanitize high-traffic communal spaces

• Recent use of drones during the COVID-19 pandemic has yielded mixed responses and has contributed to concerns about how this technology might impact personal privacy and other civil

# References

1. Hedegaard H, Miniño AM, Warner M. Drug Overdose Deaths in the United States, 1999-2017. NCHS Data Brief, no. 329. [Internet]. Hyattsville, MD: National Center for Health Statistics. 2018.

2. Claesson A, Bäckman A, Ringh M, et al. Time to Delivery of an Automated External Defibrillator Using a Drone for Simulated Out-of-Hospital Cardiac Arrests vs Emergency Medical Services.

Temperature check: Sun, D. (2020, May 22). Drones detecting body temperature being used in COVID-19

4. CBS News. "Drones Used in Effort to Slow the Spread of COVID-19." CBS News, CBS Interactive, 27 Apr.

5. Wake Forest Baptist Health, iQ Healthtech<sup>™</sup> Labs Launch Drone Delivery Service with UPS Flight Forward.

6. Davis, Hunter. "Texas Stadiums Helping Fight Coronavirus with Disinfectant-Spraying Drones." Fox News,

7. Pressman, A. (2020, July 13). Drone industry flies higher as COVID-19 fuels demand for remote services.